No artigo que dá o título a este post, Ana Gerschenfeld produziu um bom artigo sobre as descobertas por detrás do prémio Nobel da Química de 2009. Ao contrário de muitos dos artigos sobre ciência que se encontram nos jornais generalistas, este está muito cuidado. Cito-o na íntegra.
Dentro de cada uma das células do nosso corpo, bem aconchegada dentro do núcleo, reside uma compridíssima molécula de ADN. Mas o ADN é apenas um livro de instruções genéticas, uma espécie de roteiro para fabricar um ser humano. Trata-se de uma molécula passiva, que só por si não é vida. A matéria de base da vida são as proteínas — a hemoglobina, que transporta o oxigénio no nosso sangue, os anticorpos que nos protegem das doenças, a queratina do nosso cabelo e das unhas, o colagénio da nossa pele e mais umas dezenas de milhares de moléculas desse tipo. E todas essas proteínas são fabricadas pelas células, a partir das instruções do ADN, numas estruturas muito complexas: os ribossomas. Cada ribossoma mede cerca de 25 milionésimos de milímetro e cada célula contém dezenas de milhares de ribossomas.
“A tradução da informação do ADN é um dos processos mais primordiais da produção da vida. (...) Os ribossomas produzem proteínas que, por sua vez, controlam a química de todos os organismos vivos”, declarou o comité Nobel, ao explicar a decisão de atribuir este ano o Prémio Nobel da Química a três cientistas “que conseguiram cartografar a posição de cada um das centenas de milhares de átomos dos ribossomas.”
Eles são Ada Yonath, do Instituto Weizman de Ciência em Revohot, nascida em Israel em 1939; Thomas Steitz, norte-americano da Universidade de Yale, nascido em 1940; e Venkatraman Ramakrishnan, do Medical Research Council britânico, norte-americano nascido na Índia em 1952. Todos tiveram um papel essencial nesta aventura científica, que durou duas décadas.
A trilogia de Darwin
Quando Darwin postulou a sua teoria da evolução, em meados do século XIX, não se sabia quais eram os mecanismos bioquímicos responsáveis pela transmissão dos traços físicos de um organismo à sua descendência.
Em 1962, o primeiro Nobel daquilo a que o comité Nobel chamou ontem “a trilogia de Darwin”, premiou James Watson, Francis Crick e Maurice Willkins pela descoberta da estrutura molecular tridimensional do ADN. Em 2006, outro Nobel recompensou a descoberta de como a informação do ADN do núcleo é copiada para outro tipo de material genético, o ARN mensageiro, encarregado de transportá-la para os ribossomas, situados no citoplasma da célula, onde serão fabricadas as proteínas correspondentes. E agora, o prémio de 2009 recompensa a cartografia atómica dos próprios ribossomas — o mais recente dos avanços que, ao longo dos últimos 45 anos, mostraram “como as teorias de Darwin funcionam efectivamente à escala do átomo”.
O último episódio da saga começou nos anos 1970, quando Ada Yonath decidiu tentar “fotografar” um ribossoma graças à cristalografia por raios X. Este método consiste em determinar a estrutura atómica de um cristal iluminando-o com um feixe de raios X para obter uma imagem fotográfica (hoje, uma imagem digital) que informe sobre a disposição dos seus átomos.
O empreendimento exigia que se obtivesse um cristal quase perfeito de ribossoma, o que era considerado impossível. Isso não desalentou Yonah, que escolheu tentar a sorte com os ribossomas de bactérias capazes de sobreviver em condições extremas (uma conseguia resistir à salinidade do Mar Morto). A ideia era que esses ribossomas seriam mais estáveis e, portanto, mais facilmente cristalizáveis. “Em 1980, [ela] conseguiu fabricar os primeiros cristais tridimensionais [de uma parte] do ribossoma”, explica um documento do comité Nobel. (...) “Mas seriam precisos mais 20 anos de árduo trabalho para Yonah conseguir uma imagem do ribossoma onde fosse possível determinar a posição de cada átomo.”
Corrector ortográfico
Entretanto, outros cientistas tinham ficado entusiasmados com os resultados — entre eles, Thomas Steitz e Venkatraman Ramakrishnan.
O primeiro conseguiria resolver um problema técnico inerente à cristalografia de raios X, quando se trata de visualizar estruturas tão extensas como os ribossomas. E, em 1998, publicava a primeira imagem de uma das subunidades do ribossoma (a maior das duas que o compõem). “Parecia uma foto de má qualidade”, diz o comité Nobel. “Não era possível ver os átomos, mas distinguia-se as longas moléculas de ARN” (os ribossomas são compostos de ARN e de proteínas). Steitz conseguiria também “apanhar” diversos momentos da formação das proteínas, uma reacção química extremamente rápida.
Finalmente, em 2000, os três laureados publicavam imagens de cristalografia que permitiam determinar a posição de cada átomo dos ribossomas.
Os resultados de Ramakrishnan, que analisou a pequena subunidade dos ribossomas, foram cruciais para se perceber como é que conseguem traduzir os genes em proteínas sem quase nunca cometer erros. Existe um mecanismo, a cargo dessa subunidade, que verifica duas vezes se a “leitura” do ARN mensageiro está correcta — e que descarta os aminoácidos que não correspondem à sequência de ARN que está a ser traduzida.
Afinal, o que faz o ribossoma? Quando o ARN mensageiro desfila entre as suas duas subunidades, o ribossoma “lê” o código genético ali contido (cada combinação de três das quatro “letras”, ou bases, do ARN, representa um dos 20 aminoácidos que compõem as proteínas). Vai juntando esses aminoácidos e liga-os quimicamente, para obter a proteína correspondente (nesta assemblagem participa ainda um outro tipo de ARN, o ARNt — ver infografia). Conclui o comité Nobel: “Os laureados permitiram perceber ao nível atómico como a natureza consegue transformar algo tão simples como um código de quatro letras em algo tão complexo como a própria vida”.
Para ilustrar este artigo, o seguinte vídeo (encontrado aqui) mostra de forma espantosa os mecanismos envolvidos na tradução da informação codificada no ADN na sequência de aminoácidos que constitui as proteínas. Intitula-se The Ribosome in Protein Synthesis e foi produzido em 2004 por Said Sannuga do Laboratório de Biologia Molecular do Medical Research Counsil.
É importante não esquecer que o ribossoma que surge no vídeo mede cerca de 25 milionésimos de milímetro. Acho este vídeo espantoso.
1 comentários:
Olá gostei muito deste tópico ,,,,
quer dizer sim foi bom muito interessante
Enviar um comentário
1) Identifique-se.
2) Seja respeitoso e cordial.
3) São bem-vindas críticas construtivas e correcções.
4) Leia primeiro os comentários anteriores.